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Introduction



Dynamic range compression (DRC)

Aim: amplify the soft sound without reaching the pain threshold

Dynamic Range Compression (DRC):

� Attenuate the output if the level exceeds a given threshold

� Number of frequency bands : 8 → 32

Figure 1: DRC broken-stick function
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DRC - issue

Issue: left and right DRC gain are di�erent:

� Hearing loss compensation distorts the localization cues

� Localization performance decreasing1

� Speech in noise understanding performance decreasing2

1[Hassager et al., 2017b, Wiggins and Seeber, 2011, Van den Bogaert et al., 2006]
2[Schwartz and Shinn-Cunningham, 2013]
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SNR-aware DRC3

� Aims :

� reducing the speech dynamic range

� preserving the original noise dynamic range

� improving the output SNR

� Idea: fast compression for the speech period,

slowly otherwise

Advantage

improve the localization in presence of

reverberation [Hassager et al., 2017a]

Drawbacks

The attenuation of the noise only period depends

on the previous speech content!

Figure 2: Noisy speech and speech presence

detection (top), DRC gain at 3 kHz of the

SNR-aware DRC

3[May et al., 2018]

4/23



Our approach

Figure 3: Standard association of noise reduction and DRC.

Objectives :

� Reducing the speech dynamic range

� Preserving the noise dynamic range

� Improving the SNR

� Preserving the localization cues of both components

Idea

Merge noise reduction and DRC
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Data Model



Acoustical scenario

At each microphone xm(t):

� one speech source (plane wave), s(t), �ltered by hm(t).

� a noise component (spatially di�use), nm(t).

Time domain: xm(t) = (hm ? s)(t) + nm(t) (1)

STFT domain: xm(k, `) = hm(k, `)s(k, `) + nm(k, `) (2)

matrix notation: x(k, `) = h(k) s(k, `) + n(k, `). (3)

x(k, `) ∈ CM , h(k, `) ∈ CM and n(k, `) ∈ CM .
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Acoustical scenario

Speech sparsity assumption in the STFT domain:

� H0: x(k, `) = n(k, `),

� H1: x(k, `) = h(k)s(k, `) + n(k, `)

Figure 4: Speech spectrogram
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Probabilistic model

Discrete Fourier coe�cients are modeled as random variables:

s(k, `) ∼ NC (0, φs(k, `)) (4)

n(k, `) ∼ NC (0,Φnn(k, `)) (5)

Noise covariance matrix model (spatially di�use):

Φnn(k, `) = φn(k, `)Γdi�(k) (6)

8/23



Probabilistic model

Discrete Fourier coe�cients are modeled as random variables:

s(k, `) ∼ NC (0, φs(k, `)) (4)

n(k, `) ∼ NC (0,Φnn(k, `)) (5)

Noise covariance matrix model (spatially di�use):

Φnn(k, `) = φn(k, `)Γdi�(k) (6)

8/23



Proposed Algorithm



Source separation

ŝL(k, `): speech source estimate at the left ear (same for right ear)

ŝL(k, `) = w
H(k, `) x(k, `) (7)

with w(k, `) ∈ CM .

Optimization problem:

ŵL(k, `) = argmin
w

{E
[∣∣∣sL(k, `)− w

H
x(k, `)

∣∣∣2]} (8)

Using the speech sparsity assumption

E
[∣∣∣sL(k, `)− w

H
x(k, `)

∣∣∣2] = P(`)
[
p(k, `)E

[
|sL(k, `)− w

H
x(k, `)|2

∣∣H1

]
+(1− p(k, `))E

[
|wH

x(k, `)|2
∣∣H0

]]
+ (1− P(`))

[
1

µH0

E
[
|sL(k, `)− w

H
h(k)s(k, `)|2

]
+E
[
|wH

x(k, `)|2
]]

(9)
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Source separation

Informed Multichannel Wiener Filter (MWF) for the left ear:

ŵL(k, `) =
(
φs(k, `)h(k)h(k)H + µ(k, `)Φnn(k, `)

)−1
h(k)φs(k, `)hL(k)∗, (10)

with

µ(k, `) = P(`)
1

p(k, `)
+ (1− P(`))µH0 . (11)

� p(k, `): narrowband speech presence probability estimation

� P(`): broadband speech presence probability estimation
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Dynamic range compression - i

Idea introduced by [Ngo et al., 2012] and similarly by [May et al., 2018]: use di�erent

DRC to process speech source and noise source

� DRCs : to process the speech source when it is active at this T-F bin,

� DRCn H1: to process the speech source when it is NOT active at this T-F bin,

� DRCn H0: to process the speech source when it is NOT active at all bins,

� DRCn: to process the noise component.

DRC
Attack

(ms)

Release

(ms)

Gain G0

(dB)

DRCs 10 60 0

DRCn H1 10 2000 -6

DRCn H0 10 2000 -10

DRCn 2000 2000 -10
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Source presence probability - i

Multichannel estimator [Souden et al., 2010]

P(H1|x(k, `)): a posteriori source presence presence probability, denoted p(k, `)

Bayes rule:

P(H1|x(k, `)) =
P(x(k, `)|H1)P(H1)

P(x(k, `)|H1)P(H1) + P(x(k, `)|H0)P(H0)
(12)

P(x(k, `)|H1): data likelihood according to the Gaussian assumption

P(H1): prior (adaptive [Cohen, 2002])
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Source presence probability - ii

Broadband binary detector

P̂(`) =


1 if

∑
k
p(k, `) > thigh and P(`− 1) = 0

0 if
∑
k
p(k, `) > tlow and P(`− 1) = 1

P(`− 1) otherwise,

(13)

Recursive �ltering

P(`) = αP P̂(`) + (1− αP)P(`− 1) (14)
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Sum-up

� Similar to the proposition of [Ngo et al., 2012]

� Improvements :

� DRC association more consistent with the literature

� attack and release time constant decorrelation between DRC and broadband speech

detection

� binaural rather than monaural

Figure 5: Our proposition
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Experiments



Set-up

� Scenario:

� speaker located in front of the listener

� cafeteria noise

� SNR: 5 dB

� Ideal scenario: SNR of 15 dB

� With 14 di�erent HRTFs
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Results - i

Interaural coherence

IC = max
τ

∣∣∣∣∣∣∣∣
∑
t
ỹL(t + τ)ỹR(t)√∑

t
|ỹL(t)|2

∑
t
|ỹR(t)|2

∣∣∣∣∣∣∣∣ . (15)

Advantages

� Denoising across all the pipeline

� Interaural coherence closer to the ideal scenario

Figure 6: SNR improvement (top) and

interaural coherence (bottom).
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Results - ii

E�ective Compression Ratio (ECR):

� < 1: more dynamic range

� > 1: less dynamic range

Drawbacks

� Speech cut → ECR deteriorated

� Residual noise component into the speech

branch correlated with the speech → ECR < 1

Figure 7: Speech ECR (top) and noise ECR

(bottom).

17/23



Conclusion

� SNR improvement

� Better interaural coherence

� ECR deterioration due to estimation errors

� Future works: perceptive test
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Thanks for your attention

Please share your comments and questions
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