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Introduction



Dynamic range compression (DRC)

Aim: amplify the soft sound without reaching the pain threshold

Dynamic Range Compression (DRC):

e Attenuate the output if the level exceeds a given threshold

e Number of frequency bands : 8 — 32

Threshold

Input Level {dB)

Figure 1: DRC broken-stick function
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DRC - issue

Issue: left and right DRC gain are different:

e Hearing loss compensation distorts the localization cues
e Localization performance decreasing?

e Speech in noise understanding performance decreasing?

1[Hassager et al., 2017b, Wiggins and Seeber, 2011, Van den Bogaert et al., 2006]
2[Schwartz and Shinn-Cunningham, 2013]
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SNR-aware DRC3

e Aims :

e reducing the speech dynamic range
e preserving the original noise dynamic range
e improving the output SNR

— mput
— speech presence detection

e Idea: fast compression for the speech period,

5 30 35 0

) 15 20 2
slowly otherwise e
Advantage H
improve the localization in presence of o
reverberation [Hassager et al., 2017a] B SR

Figure 2: Noisy speech and speech presence
detection (top), DRC gain at 3 kHz of the

The attenuation of the noise only period depends SR BI3E
on the previous speech content!

Drawbacks

3[May et al., 2018]
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Our approach
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of noise reduction and DRC.
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Our approach
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Figure 3: Standard association of noise reduction and DRC.

Objectives :

Reducing the speech dynamic range
e Preserving the noise dynamic range
e Improving the SNR

o Preserving the localization cues of both components

Idea

Merge noise reduction and DRC
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Data Model



Acoustical scenario
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At each microphone xm(t):

e one speech source (plane wave), s(t), filtered by hm(t).
e a noise component (spatially diffuse), nm(t).
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At each microphone xm(t):

e one speech source (plane wave), s(t), filtered by hm(t).
e a noise component (spatially diffuse), nm(t).

Time domain: xm,(t) = (hm * s)(t) + nm(t) (1)
STFT domain: xm(k,£) = hm(k, £)s(k,£) + nm(k, ¢) )
matrix notation: x(k,¢) = h(k) s(k,¢) + n(k,¢). 3)

x(k,£) € CM, h(k,£) € CM and n(k, ) € CV,
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Acoustical scenario

Speech sparsity assumption in the STFT domain:

o Ho: x(k,£) = n(k,?),
o Hi: x(k,t) = h(k)s(k,£) + n(k,£)

Frequency

Figure 4: Speech spectrogram
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Probabilistic model

Discrete Fourier coefficients are modeled as random variables:

s(k,€) ~ Ng (0, ¢s(k, £)) (4)
n(k,£) ~ N (0, ®nn(k, £)) (5)
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Probabilistic model

Discrete Fourier coefficients are modeled as random variables:

s(k,€) ~ Ng (0, ¢s(k, £)) (4)
n(k,£) ~ N (0, ®nn(k, £)) (5)

Noise covariance matrix model (spatially diffuse):

Dnn(k, £) = én(k, O gigr(k) (6)
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Proposed Algorithm



Source separation

51 (k,£): speech source estimate at the left ear (same for right ear)
81 (k, 0) = wh(k, 0) x(k, 0) (7

with w(k,¢) € CM.
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Source separation

51 (k,£): speech source estimate at the left ear (same for right ear)
81 (k, 0) = wh(k, 0) x(k, 0) (7

with w(k,¢) € CM.

Optimization problem:
i (k. ) = argmindE USL(/(, 0 - wa(k,é)H} (8)
Using the speech sparsity assumption
B [[su(k ) — ws(, 0O | = PO [p(k, OF 500k ) — ws(h, ) ]

+(1 = p(k, O)E [|wHx(k, O | #Ho]

L (1- PO)) [Ml

Ho

E [\sL(u) - w”h(k)s(u)\z]

+E [|wa(k,e)\2H (9)
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Source separation

Informed Multichannel Wiener Filter (MWF) for the left ear:

Wy (k,0) = (¢5(k,£)h(k)h(k)"’ + M(k,f)cb,,,,(kj))d h(K)os(k, O)h, (K)*,  (10)

with
(k&) = P(9)

e 0 PO (1)

e p(k,?): narrowband speech presence probability estimation

e P({): broadband speech presence probability estimation
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Dynamic range compression - i

Idea introduced by [Ngo et al., 2012] and similarly by [May et al., 2018]: use different
DRC to process speech source and noise source

e DRCs: to process the speech source when it is active at this T-F bin,

e DRC, Hi: to process the speech source when it is NOT active at this T-F bin,

e DRC, Hp: to process the speech source when it is NOT active at all bins,

e DRC,: to process the noise component.

DRC Attack Release Gain Go
(ms)  (ms)  (dB)
DRC; 10 60 0
DRC, H; 10 2000 -6
DRC, Ho 10 2000 -10
DRC, 2000 2000 -10
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Source presence probability - i

Multichannel estimator [Souden et al., 2010]
P(H1|x(k,£)): a posteriori source presence presence probability, denoted p(k, ¢)

Bayes rule:

P(x(k,£)|H1)P(Ha1)
P(x(k, €)|H1)P(H1) + P(x(k, £)|Ho) P(Ho)

P(Hi|x(k,£)) = (12)

P(x(k,€)|H1): data likelihood according to the Gaussian assumption
P(#1): prior (adaptive [Cohen, 2002])
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Source presence probability - ii

Broadband binary detector

1 if Ep(k,f) > thigh and P((— 1) =0
k
P(l)=14 0 if > p(k,£) >ty and Pl —1) =1 (13)
k
P(¢—1) otherwise,

Recursive filtering
P(6) = apP(£) + (1 — ap)P(C — 1) (14)
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e Similar to the proposition of [Ngo et al., 2012]

e Improvements :
e DRC association more consistent with the literature
e attack and release time constant decorrelation between DRC and broadband speech
detection
e binaural rather than monaural
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Figure 5: Our proposition
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Experiments



e Scenario: G k\\ﬁ)
) - &

A/

e speaker located in front of the listener
e cafeteria noise
e SNR: 5 dB

e |deal scenario: SNR of 15 dB

r2)
@

e With 14 different HRTFs o) 4
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Results - i
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Figure 6: SNR improvement (top) and
interaural coherence (bottom).
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Results - ii
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Figure 7: Speech ECR (top) and noise ECR
(bottom).
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Conclusion

e SNR improvement
e Better interaural coherence

o ECR deterioration due to estimation errors

Future works: perceptive test
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Thanks for your attention

Please share your comments and questions
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